John P. Freeman Optional School

Zone 6

2023 Summer 8th Grade Packet

Student Name____

(Please be sure to write your initials on the line at the bottom of each page.)

Page 1 of 19_____

This packet contains math concepts that may or may not have been taught in your previous classes but are important for 8th grade. Students enrolled in 8th grade Pre-Algebra for the 2022-2023 school year are expected to submit a completed packet during the first week of school (August 8-12). Exact due dates/procedures will be discussed on August 8th.

Algebra I Summer Math Packet Instructions

Student Name

- This packet has 6 sections, and it is recommended that students work on one section each week during the summer. It is NOT recommended to complete this packet immediately following school dismissal nor the night before the packet is due. Student learning is most effective if the packet is worked on throughout the summer at a steady pace.
- You should complete the problems without a calculator, and you should <u>SHOW ALL YOUR</u>
 <u>WORK.</u> Use additional paper is needed. No credit will be provided if your work is not shown.
- 3. After completing a section, rate your understanding of each week's topic by circling the image in the chart below.
 - **Smiley face** You understand ALL the concepts for that week and would be able to teach it to another student.
 - **Neutral face** You understand the concepts for the most part
 - **Confused face** You do not understand these concepts and need help reviewing.

WEEK	матн торіс	MYKATING	
1	Integer Operations		

2	Order of Operations	••	
3	Laws of Exponents	•••	
4	Pythagorean Theorem	••	
5	Simplifying Radicals	••	
6	Graphing Linear Equations	••	

What do I do if I don't understand something?

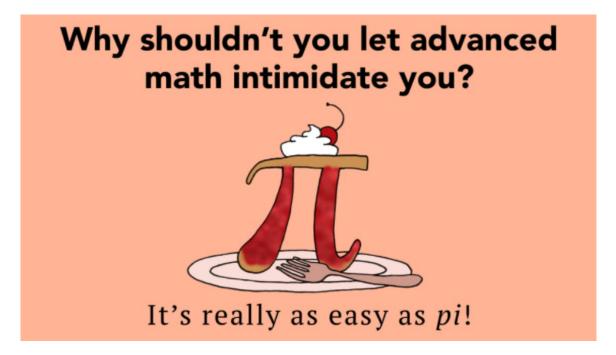
- Use your resources (online help sites, iReady, videos, parents, siblings, etc.)
- You may use the reference links in this packet to help you.
- Make a note of the topic/question on the rating chart and ask your teacher to review it during the first week of school.

What happens next?

- Concepts will be reviewed and discussed during the first week of school.
- Students will receive both a participation grade and an assessment grade, based on the packet completion. (Your teacher will discuss this with you August 8, 2022.)

We are excited about working with all of the students entering 8th grade in 2022-2023. We want all students to feel prepared, confident, and successful for all of the important new concepts they will learn next year.

Rising 8th Graders <u>RESOURCES</u>


WEEK	MATH TOPIC	VIDEO & TUTORIAL LINKS		
1	Integer Operations	 7.NS.A.1 <u>https://www.khanacademy.org/math/cc-seventh-grade-math/cc-7th-negative-numbers-add-and-subtract/cc-7th-sub-neg-intro/v/adding-and-subtracting-negative-number-examples</u> <u>https://www.youtube.com/watch?v=0hEQL3F5mc8</u> 		
2	Order of Operations	 7.NS.A.1 <u>https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-arithmetic-operations/cc-6th-order-of-operations/v/order-of-operations-1</u> <u>https://www.youtube.com/watch?v=dXvvGc9TldY</u> 		
3	Laws of Exponents	 8.EE.A.1 <u>https://www.mathwarehouse.com/algebra/exponents/law</u> <u>s-of-exponents.php</u> 		

		 <u>https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-numbers-operations/cc-8th-pos-neg-exponents/v/negative-exponents</u> <u>https://mathantics.com/lesson/laws-of-exponents</u>
4	Pythagorean Theorem	 8.G.B.5 <u>https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-geometry/cc-8th-pythagorean-theorem/v/the-pythagorean-theorem</u> <u>https://www.youtube.com/watch?v=-jeYE99qwBY</u>
5	Simplifying Radicals	 8.EE.A.2 https://www.khanacademy.org/math/algebra/x2f8bb1159 <u>5b61c86:rational-exponents-</u> <u>radicals/x2f8bb11595b61c86:simplifying-square-</u> <u>roots/v/simplifying-square-roots-1</u> https://www.youtube.com/watch?v=oB7r_kfMC6o
6	Graphing Linear Equations (slope – intercept form)	 8.EE.B.5 https://www.khanacademy.org/math/algebra/x2f8bb1159 <u>5b61c86:forms-of-linear-</u> equations/x2f8bb11595b61c86:graphing-slope-intercept- equations/v/graphing-a-line-in-slope-intercept-form <u>https://www.youtube.com/watch?v=mDwREDma3ro</u>

Week 1: Integer Operations

Addition When addends have the same sign, add. Use that sign when you write the sum: 5 + 8 = 13 -2 + -5 = -7	its opposite: *The opposite of 12 is -12	Multiplication When factors have the same sign, the product is positive: $5 \cdot 6 = 30$ $-13 \cdot -3 = 39$	Division When the dividend and the divisor have the same sign, the quotient is positive: $45 \div 5 = 9$ $-120 \div -6 = 20$
When addends have different	0 - 12 = 0 + 12 = 21	When the factors have	When the dividend and the
signs, subtract. Use the sign		lifferent signs, the product is	divisor have different signs
of the greater addend:		regative:	the quotient is negative:
-6 + 4 = -2		$-6 \cdot 8 = -48$	$35 \div -5 = -7$
45 + -10 = 35		$9 \cdot -11 = -99$	$-250 \div 10 = -25$

- 1. -2 + (+3) = 2. -3(-4) = 3. 45 (-27) =
- $4. -5 + (+4) = 5.24 \div (-6) = 6.19(-4) =$
- 7.. $5 (-3) = 8.5(-18) = 8.-42 \div (-6) =$
- 9. -7 (-3) = 10. $-8 \div (-4) = 11$. -21 + -19 =
- $12. -14 6 = 13. 17(-4) = 14. 32 \div (-4) =$
- 15. 6 + (-8) = 16. $81 \div (-9) =$ 17. 14 (-7) + (-2) =
- $18. \ 93 -21 = 19. \ -7 + 2 = 20. \ -21 \div (-7) =$
- 21. -3 * -6 22. 15 * -3
- 23. **-4** * **9** 24. **-3** * **-5** * **-6**
- 25. $-24 \div -3$ 26. $40 \div -8$

Week 2: Order of Operations

	Order of Operations				
1 st	Grouping Symbols	$\frac{4+2}{8\cdot7} = \frac{(4+2)}{(8\cdot7)} \sqrt{50-1}$ $50 - [3 \cdot (15-5)] + 23$ $\int_{\text{Do this } 1^{2}}^{12}$	Grouping Symbols include: (), { }, [],] ← absolute value bars. In addition, complete all operations grouped by the <u>numerator</u> or <u>denominator</u> in a fraction & operations located underneath a radical symbol.		
2 nd	Radicals & Exponents	3^2 $3^{\frac{1}{2}}$ $\sqrt{3}$ $\sqrt[4]{81}$	Rational Exponents & Roots are included		
3 rd	Division & Multiplication	$30 \div 2 \cdot 5 = 75$ $30 \cdot 2 \div 5 = 12$	Calculate Left to Right		
4 th	Subtraction & Addition	$\xrightarrow{-2+6-8} = -4$	Calculate Left to Right		

Use the order of operations to solve the following problems.

1. 18 - (-12 - 3) = 2 - 19 + (7 + 4)3 =

 $3.18 + (-7) \cdot (32 - 6) = 4. -19 - (-3) + -2(8 + -4) =$

5. $20 + -4(32 - 6) = 6. -3 + 2(-6 \div 3)2$

7. $3 \cdot (-4) + (52 + -4 \cdot 2) - (-9.82) =$

8.
$$23 + (-16) \div 42 \cdot 5 - (-3) =$$

9.
$$-6(12 - 15) + 23 =$$

$$10. -50 \div (-10) + (5 - 3)4 =$$

$$11 - 4.5 \cdot (-0.53) + (-1)$$

12. 5 - 2 + 8

13. 85 / 5 + (8+9) x 2 =

Week 3: Laws of Exponents

5. EXPANDED POWER RULE:

$$(xy)^m = x^m y^n \qquad \left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$$

Examples:

- A. $(2a)^3 = 2^3a^3 = 8a^3$ C. $\left(\frac{x^2}{y}\right)^4 = \frac{(x^2)^4}{y^4} = \frac{x^8}{y^4}$ B. $(6x^3)^2 = 6^2(x^3)^2 = 36x^6$ D. $\left(\frac{2x}{3y^2}\right)^3 = \frac{(2x)^3}{(3y^2)^3} = \frac{2^3x^3}{3^3(y^2)^3} = \frac{8x^3}{27y^6}$
- 6. NEGATIVE EXPONENTS: If a factor in the numerator or denominator is moved across the fraction bar, the sign of the exponent is changed.

$$x^{-m} = \frac{1}{x^m}$$
 $\frac{1}{x^{-m}} = x^m$ $\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$

Examples:

B. $4^{-2} = \frac{1}{4^2} = \frac{1}{16}$ C. $-4x^5y^{-2} = \frac{-4x^5}{y^2}$ A. $x^{-3} = \frac{1}{x^3}$ D. $\left(\frac{x^2}{y}\right)^{-3} = \left(\frac{y}{x^2}\right)^3 = \frac{y^3}{x^6}$ E. $(3x^{-2}y)(-2xy^{-3}) = -6x^{-1}y^{-2} = \frac{-6}{xy^2}$ F. $\frac{a^{-2}b^3}{c^{-4}d^{-1}} = \frac{b^3c^4d}{a^2}$ G. $(-2x^2y^{-4})^{-2} = \left(\frac{-2x^2}{y^4}\right)^{-2} = \left(\frac{y^4}{-2x^2}\right)^2 = \frac{y^8}{4x^4}$

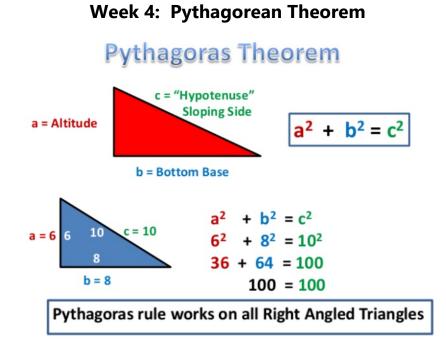
CAUTION: $-x \neq \frac{1}{x}$ For example: $-3 \neq \frac{1}{3}$ **REMEMBER:** An exponent applies to <u>only</u> the factor it is directly next to *unless* parentheses enclose other factors. Examples:

A.
$$(-3)^2 = (-3)(-3) = 9$$

B. $-3^2 = -9$

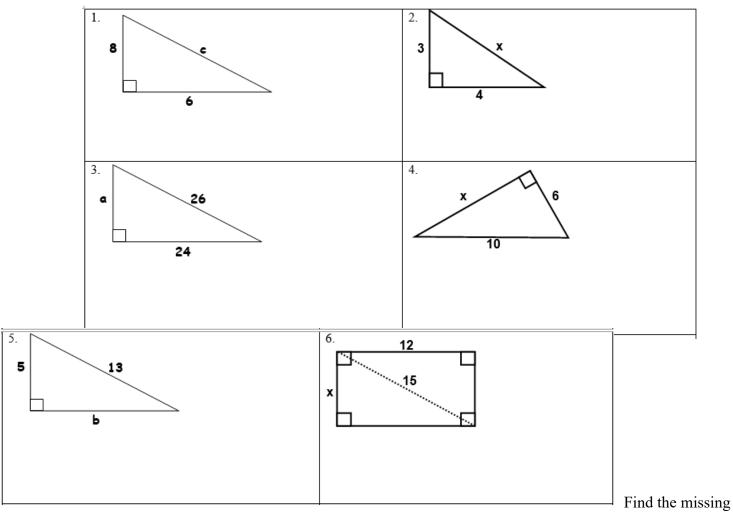
1. PRODUCT RULE: To multiply when two bases are the same, write the base and ADD th Page 9 of 16 _____ $x^m \cdot x^n = x^{m+n}$

Examples:


A.
$$x^3 \cdot x^8 = x^{11}$$

B. $2^4 \cdot 2^2 = 2^6$
C. $(x^2y)(x^3y^4) = x^5y^5$

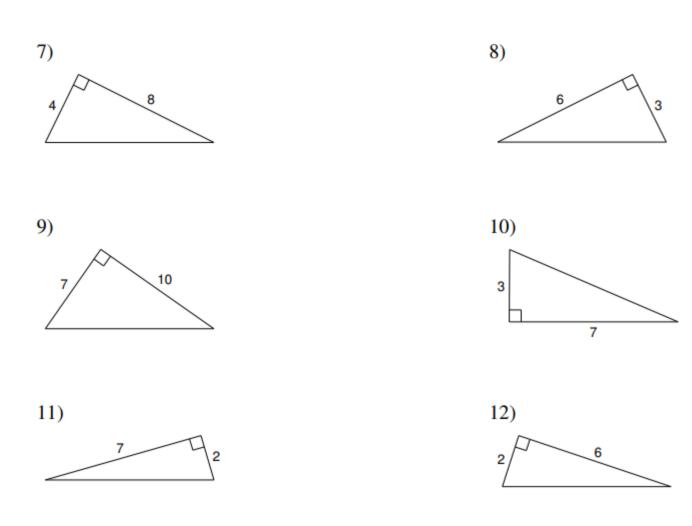
Simplify each of the following.


1.
$$3 \cdot 4^{3}$$

2. $4x^{3} \cdot 2x^{3}$
3. $x^{5} \cdot x^{3}$
4. $2x^{3} \cdot 2x^{2}$
5. $\frac{6^{5}}{e^{5}}$
6. $\frac{x^{4}}{x^{7}}$
7. 8^{0}
8. $-(9x)^{0}$
9. $(y^{4})^{3}$
10. $(x^{2}y)^{4}$
11. $(\frac{4x^{5}y}{16xy^{4}})^{3}$
12. $\frac{1}{x^{-5}}$
13. $(2x^{3}y^{-3})^{-2}$
14. $(2x^{2}y)^{4}$
15. $\frac{6x^{2}}{e^{5}}$
15. $\frac{6x^{5}}{e^{5}}$
16. $\frac{(x^{4}x)^{2}}{x^{7}}$
17. $(\frac{4x^{5}y}{16xy^{4}})^{4}$
18. $(\frac{5x^{3}y}{20xy^{5}})^{4}$
19. y^{-7}
19. y^{-7}
20. 7^{-2}
20. 7^{-2}
21. $\frac{1}{x^{-5}}$
22. $\frac{1}{x^{4}}$
23. $(2x^{3}y^{-3})^{-2}$
9. $(y^{4})^{3}$
21. $\frac{1}{x^{-5}}$
23. $(2x^{3}y^{-3})^{-2}$
9. $(y^{4})^{3}$
21. $\frac{1}{x^{-5}}$
23. $(2x^{3}y^{-3})^{-2}$
9. $(y^{4})^{3}$
21. $\frac{1}{x^{-5}}$
23. $(2x^{3}y^{-3})^{-2}$
9. $(2x^{4})^{4}$
21. $\frac{1}{x^{-4}}$
22. $\frac{1}{x^{-4}}$
23. $(2x^{4}y^{-4})^{3}$
24. x^{-6}
36. $5x^{2}y(2x^{4}y^{-3})$
25. $x^{9} \cdot x^{-7}$
37. $(\frac{-7a^{2}b^{3}c^{9}}{3a^{2}b^{4}c^{3}})^{-4}$
13. $(2cd^{4})^{2}(cd)^{5}$
26. $(j^{-13})(j^{4})(j^{6})$
38. $(\frac{-2a^{3}b^{3}c^{9}}{3a^{2}b^{4}c^{7}})^{-2}$
39) $a \cdot a^{2} \cdot a^{3}$
40) $(2a^{2}b)(4ab^{3})$
41) $(6x^{3})(-3x^{5})$
42) $b^{3} \cdot b^{4} \cdot b^{7} \cdot b$
43) $(3x^{3})(3x^{4})(-3x^{2})$
44) $(2x^{2}y^{5})^{2}$
48) $(7xy)^{2}$
49) $\frac{x^{3}}{x}$
50) $\frac{18c^{2}}{2z^{2}}$

49) —	- 50)	$\overline{-3c^2}$
x		$-3c^2$

Page 12 of 19_____



Find the missing side lengths.

length to the nearest tenth.

Page **13** of **19**____

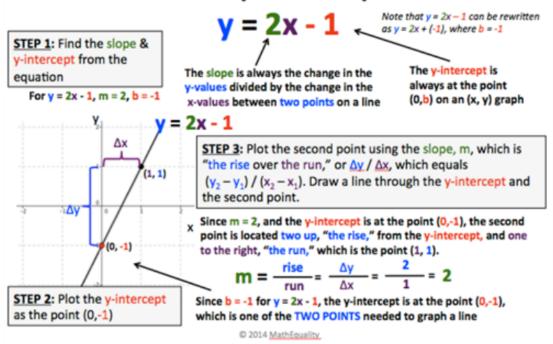
What is the missing side length? Show your work.

13) a = 7, b = 24, c = ?14) a = ?, b = 34, c = 37

15) a = 11, b = ?, c = 61

16) a = 5, b = 12, c = ?

Week 5: Simplifying Radicals

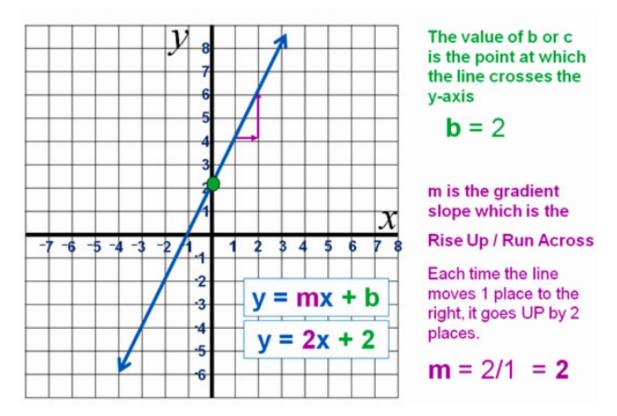
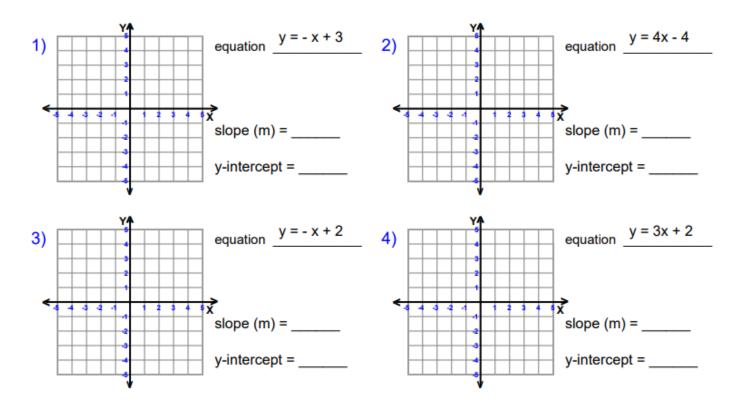

Simplify Square Roots

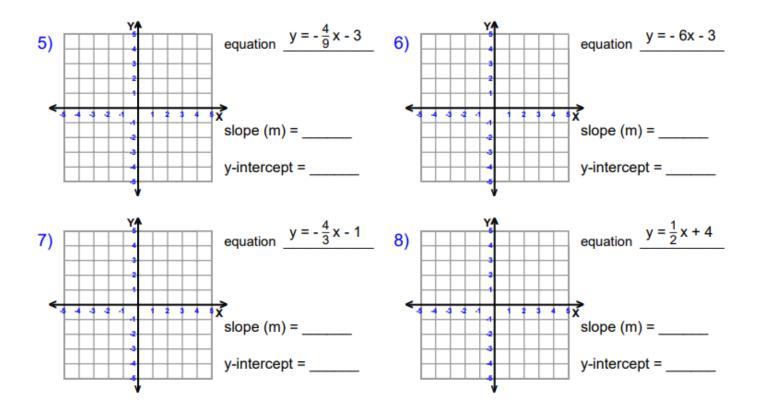
	Find Perfe $\sqrt{48} = \sqrt{1}$ $= 4 \times$ $= 4 \sqrt{1}$	$\overline{.6} \times \sqrt{3}$	Find Prime Factors $\sqrt{48} = \sqrt{2 \times 2 \times 2 \times 2}$ $= \sqrt{2 \times 2} \times \sqrt{2 \times 2}$ $= 2 \times 2 \times \sqrt{3}$ $= 4 \times \sqrt{3}$	×3
Simplify complete 1. $\sqrt{9} =$		3. √ 5 0	$= 4\sqrt{3}$ $= 4\sqrt{3}$ $4. \sqrt{80}$	5. √7 <u>2</u>
6. √ <u>120</u>	7. √68	8. √ <u>200</u>	9. √180	10. √33
11. 3√ <u>12</u>	12. 5√ 4 8	13. 2	√ 76 14.	-3√32 15. 5√80
16) \[16]	17) $\sqrt{45}$	18) 🗸	72 19) $\sqrt{20}$ 20) $\sqrt{150}$

Page 15 of 19_____

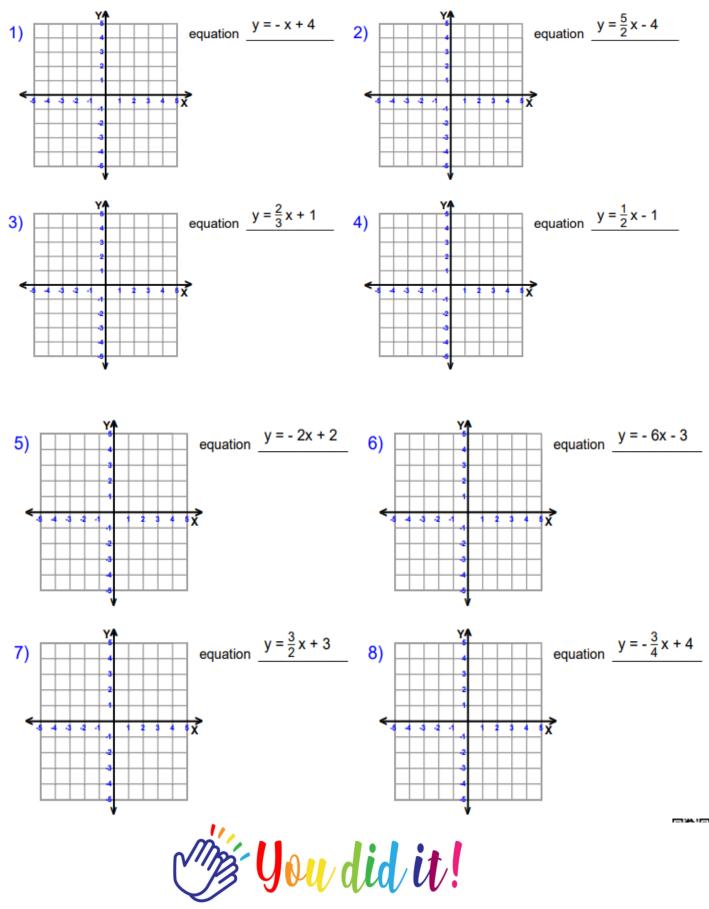
Week 6: Graphing Linear Equations (Slope – Intercept Form)

Step-by-Step Method to Graph a Line when in Slope-Intercept Form


Image Copyright 2013 by Passy's World of Mathematics

line with a straight edge or ruler. Then tell the slope and y-intercept.


Graph each

Page 17 of 19_____

Graph each line with a straight edge or ruler.

Page 19 of 19_____